Urika Training

From Research Computing Website


Venue and Timings

Conference Room # 310, TAMUQ Building
Timings: 0830-0430pm
First Coffee Break at: 10am - 1015am
Lunch Break: 12pm to 01pm
Afternoon Coffee Break: 230pm - 0245pm

Path to shared files

/lustre/share/urika_training

Reservation

#SBATCH --account=ut
#SBATCH --reservation=ut
#SBATCH --partition=l_long
#SBATCH --qos=lcustom3

How to request allocation?

salloc -N 4 --account=ut --reservation=ut --partition=l_long --qos=lcustom3 start_analytics

Create tunnel for jupyter notebooks

Instructions for setting up tunneling on raad2 for Jupyter notebooks

  1. Create a directory called "notebooks" (no quotes) in your home directory. Copy all the files from /lustre/share/urika_training/uxc_1.1/notebooks to this directory. Also, copy the file alldemo.yml from /lustre/share/urika_training/uxc_1.1/Anaconda to this directory.
  2. Create tunnel from laptop through raad2 elogin node to raad2-login1 OR raad2-login2
  3. Choose any 3 random number (port_num_1, port_num_2, port_num_3) b/w [10000 - 50000], these will be used as port numbers for tunneling.
  4. From a terminal session on your laptop:
(use your own login instead of jamaltb30!)
laptop$ ssh -L <port_num_1>:raad2-login2:22 -N -f <user_name>@raad2.hbku.edu.qa
  1. This will return you to your laptop prompt, leaving a tunnel active. Then log directly into the login2 node:
laptop$ ssh -l jamaltb30 -L <port_num_2>:localhost:<port_num_3> -p <port_num_1> localhost
jamaltb30@raad2-login2:~>
  1. Load the analytics module
module load analytics
  1. Start the analytics package on login2 with the -d flag
jamaltb30@raad2-login2:~> start_analytics -d
  1. Create a conda environment to run the demos. You will only need to do this once.
jamaltb30@raad2-login2:~> conda env create -f alldemo.yml
jamaltb30@raad2-login2:~> exit
  1. Start up the analytics cluster, specifying the communications ports and conda environment
jamaltb30@raad2-login2:~> salloc -N 4 -p l_long --qos=lcustom3 --account=ut --reservation=ut start_analytics --login-port <port_num_3> --ui-port <port_num_2> --dask-env alldemo
  1. export the python environment to all the compute nodes in the cluster
a_student@nid00032:~> export PYSPARK_PYTHON=$(which python)
  1. Run the jupyter notebook
jupyter notebook --port <port_num_2>

After some messages, it will give you a string with a passcode that you can paste into the address window of your local browser on your laptop.
The jupyter notebook should start up!

Cookies help us deliver our services. By using our services, you agree to our use of cookies.
© 2025 | RComputing